Problem 1 (Individual) - KEY

Consider a two phase $1000 \mathrm{lb}-\mathrm{mole} / \mathrm{hr}$ stream with the following composition: Butane $33 \mathrm{~mol} \%$, Pentane $51 \mathrm{~mol} \%$, Hexane $16 \mathrm{~mol} \%$, at 15 pisa and $130{ }^{\circ} \mathrm{F}$. This is the same mixture used in the previous assignment. It is desired to separate this mixture into two streams. One with 99% butane and another one with NO MORE THAN 1% butane.

Use the Fenske method to determine the number of trays that you will approximately need.

Mass Balance:
$F=D+B$
$z_{\text {butane }} F=\left(x_{D}\right) D+\left(x_{B}\right) B$
We assume that $\mathrm{F}=1000 \mathrm{lbmol} / \mathrm{hr}, z_{\text {butane }}=0.33, \mathrm{x}_{\mathrm{D}}=0.99$, and $\mathrm{x}_{\mathrm{B}}=0.01$.
$1000 \frac{\mathrm{lbmol}}{\mathrm{hr}}=D+B$
$0.33\left(1000 \frac{\mathrm{lbmol}}{\mathrm{hr}}\right)=(0.99) D+(0.01) B$

Solving the two equations yields:
$D=326.531 \frac{\mathrm{lbmol}}{\mathrm{hr}}$
$B=673.470 \frac{\mathrm{lbmol}}{\mathrm{hr}}$

Use the Fenske Equation.
$N_{\text {min }}=\frac{\operatorname{LOG}\left[\left(\frac{x_{d}}{1-x_{d}}\right) *\left(\frac{1-x_{b}}{x_{b}}\right)\right]}{\operatorname{LOG}\left(\alpha_{\text {avg }}\right)}$
$\propto_{\frac{\text { butane }}{\text { pentane }}}=\frac{K_{\text {butane }}}{K_{\text {pentane }}}$
$K_{i}=\frac{P_{i}^{s a t}}{P}$
$K_{i}=\frac{10^{A_{i}-\left(\frac{B_{i}}{C_{i}+T}\right)}}{P}$

F (lbmol/hr)	1000
\mathbf{P} (psia)	35
\mathbf{P} (bar)	2.41317
T (${ }^{\circ} \mathrm{F}$)	130
T (K)	327.594
$\mathbf{Z}_{\text {butane }}$	0.33
$\mathrm{Z}_{\text {pentane }}$	0.51
$\mathrm{Z}_{\text {hexane }}$	0.16

Butane				
A	4.35576			
B	1176.58			
\mathbf{C}	-2.071			
$\mathbf{P}^{\text {sot }}$ (bar)	5.51223			
\mathbf{K}	2.28423			
\mathbf{X}	0.22918			
\mathbf{y}	0.52351	\quad	Pentane	
:---	---:			
	\mathbf{B}			
\mathbf{C}	1070.62			

Hexane	
\mathbf{A}	4.00266
\mathbf{B}	1171.53
\mathbf{C}	-48.784
$\mathbf{P}^{\text {sot }}$ (bar)	0.63207
\mathbf{K}	0.26193
\mathbf{x}	0.21414
\mathbf{y}	0.05609

$\propto_{\frac{\text { butane }}{\text { pentane }}}=\frac{2.28423}{0.75519}=3.02469$
$N_{\text {min }}=\frac{\operatorname{LOG}\left[\left(\frac{0.99}{1-0.99}\right) *\left(\frac{1-0.01}{0.01}\right)\right]}{\operatorname{LOG(3.02)}}$
$N_{\text {min }}=8.315$
~ 8 trays are needed.

