Problem 1 (Individual) - KEY

Consider a two phase 1000 lb-mole/hr stream with the following composition: Butane 33 mol %, Pentane 51 mol %, Hexane 16 mol %, at 15 pisa and 130 °F. This is the same mixture used in the previous assignment. It is desired to separate this mixture into two streams. One with 99% butane and another one with NO MORE THAN 1% butane.

Use the Fenske method to determine the number of trays that you will approximately need.

	r				
		D (99% recovery LK)			
		0.99*326.531=323.266 lbmol/hr butane			
		326.531-323.266=3.265 lbmol/hr pentane			
F = 1000 lbmol/hr		0 lbmol/hr hexane			
330 lbmol/hr butane (LK)	FLASH				
510 lbmol/hr pentane (HK)		B (99% recovery HK)			
160 lbmol/hr hexane		0.01*673.430=6.735 lbmol/hr butane			
		673.430-6.735-160=506.735 lbmol/hr pentane			
		160 lbmol/hr hexane			

Mass Balance: F = D + B $z_{butane}F = (x_D)D + (x_B)B$

We assume that F = 1000 lbmol/hr, z_{butane} = 0.33, x_D = 0.99, and x_B = 0.01.

$$1000 \frac{lbmol}{hr} = D + B$$
$$0.33 \left(1000 \frac{lbmol}{hr} \right) = (0.99)D + (0.01)B$$

Solving the two equations yields: *lhmol*

$$D = 326.531 \frac{lbmol}{hr}$$
$$B = 673.470 \frac{lbmol}{hr}$$

$$N_{min} = \frac{LOG\left[\left(\frac{x_d}{1-x_d}\right) * \left(\frac{1-x_b}{x_b}\right)\right]}{LOG(\alpha_{avg})}$$

$$\propto_{\frac{butane}{pentane}} = \frac{K_{butane}}{K_{pentane}}$$

$$K_i = \frac{P_i^{sat}}{P}$$
$$K_i = \frac{10^{A_i - \left(\frac{B_i}{C_i + T}\right)}}{P}$$

F (lbmol/hr)	1000	Butane		Pentane		Hexane	
P (psia)	35	Α	4.35576	Α	3.9892	Α	4.00266
P (bar)	2.41317	В	1176.58	В	1070.62	В	1171.53
т (°F)	130	С	-2.071	С	-40.454	С	-48.784
т (К)	327.594	P ^{sat} (bar)	5.51223	P ^{sat} (bar)	1.82241	P ^{sat} (bar)	0.63207
Z _{butane}	0.33	к	2.28423	к	0.75519	к	0.26193
Zpentane	0.51	x	0.22918	x	0.55668	x	0.21414
Z _{hexane}	0.16	У	0.52351	у	0.4204	у	0.05609

$$\propto_{\frac{butane}{pentane}} = \frac{2.28423}{0.75519} = 3.02469$$

$$N_{min} = \frac{LOG\left[\left(\frac{0.99}{1-0.99}\right) * \left(\frac{1-0.01}{0.01}\right)\right]}{LOG(3.02)}$$
$$N_{min} = 8.315$$

~8 trays are needed.